• Tag Archives: Teaching

Magic Number 2652 Explained

Testing a capacitor under load means testing it while it is in an operating circuit. To do this you measure the operating capacitor amp draw and voltage and then apply them to the formula

Why does this work and where does the 2652 come from? To answer these questions, we need to understand what a capacitor does in an AC motor circuit.

What Does a Capacitor Do?

A run capacitor’s job is to add enough capacitive reactance to offset the inductive reactance of the winding it is in series with. Current in an inductive (magnetic) load lags the voltage. This means that the current peaks AFTER the voltage. Since the current and voltage are out of phase with each other, they don’t work together, causing inefficiency. Adding a capacitor in series with an inductive (magnetic) load helps correct this because capacitors cause the current to peak BEFORE the voltage. The amount of capacitive reactance needed depends upon the inductive reactance of the motor.

Like resistance, capacitive reactance is measured in ohms. The capacitive reactance produced by a particular capacitor varies with both the frequency of the AC current and the microfarad capacity of the capacitor. Higher frequencies and higher microfarad capacity both decrease capacitive reactance. The formula is

 This means that capacitive reactance is equal to the inverse of the product of 2 x pi x frequency x Farad rating. Through the magic of algebra we know that we can swap the XC (capacitive reactance) and C (capacitance) terms to get our formula for capacitance. That gives us the formula

 This can be rewritten as  

In this formula, 2π is a mathematical expression for a cycle. Recalling that the circumference of a circle is twice the radius times π, the expression 2π represents a complete turn of a circle if we are not concerned with the circle’s radius. Frequency is represented by f, which is always 60 cycles in North America. Together, 1/2πf calculates the effect of frequency on capacitive reactance.

works out to 0.00265258 for 60 cycle power. This would produce an answer in Farads, but we normally work with microfarads. Multiplying this by 1000 to get 2652.58 produces an answer in microfarads. This is usually rounded to 2652.

What about the capacitive reactance, XC? Remember that capacitive reactance is measured in ohms and that ohms can be found by dividing volts by amps. So we can substitute the capacitor voltage divided by the capacitor amps for the capacitive reactance. However, since 1/XC is the inverse of capacitive reactance, the fraction is flipped to perform the multiplication, placing amps on top. Together the two terms become

Chalk and Talk

Several years ago a fellow HVAC instructor told me he had been strongly encouraged by his immediate supervisor to do more lecturing. To the academically trained supervisor, working with students in the lab didn’t look like teaching, it looked like training. In the supervisor’s mind, training was a lower level pursuit – akin to monkey see monkey do. The school had just transitioned from a Technical School to a Technical Collage and they wanted to look like a college.

The instructor was asking for any help I could offer, especially along the lines of “chalk and talk”, his description of what he felt was being asked of him. I think that phrase perfectly embodies why so many students really don’t get a lot out of lectures – they are just observers, not participants. The instructor is writing stuff on the board and talking while the students are just passive observers.  In the days of chalk boards, the instructor was not even facing the class when they were writing. It sometimes seemed like the teacher was engrossed in their own thoughts while they stare at the board and talk to no one in particular.

We have advanced a bit since then. At least with Powerpoint presentations we are usually facing the class, even if we are staring at our computer monitor most of the time. However, it is possible to lecture and still rise above the mind-numbing norm of a monologue delivered to a captive audience of passive observers.  

Begin by facing your audience and making eye contact with people long enough so they feel you are speaking to them personally. If you are using a Powerpoint presentation, be familiar enough with the presentation and the material that you don’t have to read the notes while looking at the screen. It is OK to look at the screen occasionally, but if your discussion is just straight out reading the notes it will be boring no matter how good the presentation is.

Use voice inflection and hand motion to convey personal interest in your subject matter. How do you expect your class to maintain interest if YOU think the talk is boring.

Stop and take a breath. One dead give away of a nervous speaker is someone who has rehearsed their speech so much that all the words come out in a rapid-fire regurgitation that indicates they are just repeating memorized phrases, not really thinking about they are saying.

Whenever possible, involve your audience. People learn more if they do more. Ways to involve the class could include group questions, prompts for input, or even direct questions to individual students if you know them well enough. Be careful with the last suggestion, the goal is to include the students, not intimidate or embarrass them.

Use visual aids. This is pretty easy to do today. Just be careful not to overdo the videos and pictures you share. You should not be handing your class over to professor YouTube, just showing snippets that enhance and reinforce your talk.

When using online material, make sure and watch it yourself first. Even though you are not the person in the video, if you show it to your class you are in effect endorsing it. There are some things online that you don’t want to be associated with.

Finally, this is an HVACR class. It is perfectly OK to have gauges, meters, gas valves, compressors, or any other tools or parts you want as visual aids. If you are talking about meters, every student should have one in their hands. You can even do some small exercises during the lesson. Remember, people learn by doing, so have the students do something. No, this is not your typical college class – it is a hell of a lot more interesting.

Human Search Engine

Instructors worry about not knowing all the answers. I know that I do. Let me put you at ease. You don’t have to know all the answers to be an effective instructor. In fact, I feel that anyone who knows all the answers hasn’t asked enough questions. Our job as instructors is not to be a human search engine, but to teach students how to search for answers on their own. In short, to help students become more proficient at the learning process, specifically applied to our field of HVACR. To be clear, I am not suggesting that instructors do not need to be competent in HVACR. Nor am I saying you shouldn’t want to know as many answers as possible. Just that knowing every answer a student might ask is not necessary. Discomfort with areas where you don’t know the answers can sometimes cause instructors to cling to the specific areas of information they already know and refuse to broaden their scope. This is particularly true when it comes to new technology and industry developments. I believe this is an unconscious effort to “know everything” by limiting the scope of knowledge you expose yourself and your students to. Venturing into areas of new development can be uncomfortable because you don’t have as many answers at the ready. However, it is perfectly OK to tell a student that you don’t know the answer to a question they ask. Help them by directing them to resources where they might find answers. They are going to need research skills when they enter the field. Teaching students to learn on their own is probably the most important thing you can possibly teach them. On those many occasions when you DO know the answer, it can be more helpful to guide them through a search process than to simply hand them the answer. People tend to remember things they discover on their own more than things that people tell them. It takes discipline to do this. Providing the answer immediately basically concludes the interaction with the student. Asking leading questions or discussing relevant informative resources makes the interaction more of a dialogue and requires more student participation. It definitely takes a little longer, but provides a better long-term result. Remember, students learn more by what THEY DO, than by what you do.  

Gigabit vs Dialup

When lecturing, you should be more interested in ensuring the students understand what you are saying than covering a specific amount of material. Even if you manage to vocalize every important piece of information about a particular subject, it is largely a wasted effort if the students are not receiving the information. Your job is not to state all relevant facts, but to communicate them to the students. It is easy for us to transmit data faster than the students can absorb it. Remember, you have seen all this information before, probably said it all before, many times. You are not having to mentally connect the facts into a logical framework because you have already done that. However, the students who are hearing it for the first time have to comprehend each statement and then tie the different statements together in some logical manner in order to really understand what they are hearing. Help them comprehend the information by including analogies, similes, and connecting statements. One of the most powerful teaching techniques is to introduce new concepts and ideas using things people already know and understand. For example, “the refrigeration system moves heat from one place to another, much like a sponge can absorb water in one place and then release it in another when you squeeze it.” Like all analogies, it is imperfect, but it starts the process of thinking about absorbing heat in one place and releasing it somewhere else. Once you get that point across you can start talking about what the refrigerant does to absorb heat. Maybe boil some water in a flask. Learning is not just collecting data, it is making mental connections between the data points to develop new concepts. This takes time. If you are talking at gigabit speed while your students are listening on dial-up, most of the information will be lost. I have been guilty of this. I can recall asking students questions at the end of a one hour lecture only to discover that they did not really understand something that I said 15 minutes into my lecture. So although I discharged my duty to cover everything, really, I just wasted everyone’s time – including mine! So when lecturing, take some time along the way to ask a few questions and engage in some dialogue with the students to make sure your message is being received. Remember, the idea is not to demonstrate your knowledge, but to help the students increase theirs.

Teach the Process

A common problem that many students have across all levels of education is a failure to gain a thorough understanding of the subject matter being taught. I believe that the primary culprit is our over reliance on standardized, multiple-choice tests. Information is presented as a disjointed collection of individual facts to memorize so they can be recalled on a test. Think of these facts as data points. People make poor data storage devices. Computers do a much better job. Now that everyone carries a computer in their pocket that is connected via the internet to supercomputers all over the world, there is very little reason for people to spend much time practicing personal data storage by memorizing and recalling facts. Instead, we should focus on what we are better at: understanding. By studying relationships and processes in addition to data, we gain an understanding of subject matter that is far deeper and more consequential. This level of learning exceeds what is possible by simply storing “facts” in our imperfect personal data storage units.

It takes very little to make our collection of facts useless. A few years ago I was asked to write some technical literature for schools teaching HVAC in Georgia. I readily agreed, after all, I live in Georgia. After agreeing I found out the literature was to be for the Republic of Georgia, the one next to Russia! They don’t measure things in BTUs, CFM, tons of cooling, pounds, Fahrenheit, or any of the other thousand factoids I have rattling around in my head. Things like “400 CFM per ton” instantly became useless. Memorized snippets of code nearly as useless – I had to look up their laws and codes. Most every “fact” that I thought I knew became irrelevant.
Fortunately, the principles that make the refrigeration cycle work are still the same. Although pressure is measured in kilopascals, temperature in Celsius, heating and cooling capacity in kilowatts, the processes and relationships are the same no matter which Georgia you are working in. While most of us will not have to worry about working in the “other” Georgia, we will have to adapt to technical advancements and changes which can make our set of “facts” just as useless. Take “400 CFM per ton”. Most new equipment does not come set for 400 CFM per ton out of the box anymore. New refrigerants are going to bring a whole new set of PT charts, so those saturated pressures at 45° and 100° are going to change. It is far easier to adapt to tomorrow’s technology if you truly understand today’s technology. Teach the processes, not an assortment of facts.

close